This is default featured post 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Showing posts with label Turbin Air. Show all posts
Showing posts with label Turbin Air. Show all posts

Wednesday, September 16, 2020

Turbin Air

Dalam suatu sistim PLTA, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi puntir ini kemudian diubah menjadi energi listrik oleh generator. Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi energi mekanis atau sebaliknya. Mesin ini berfungsi untuk merubah energi fluida menjadi energi mekanis pada poros. misalnya : turbin air, turbin uap, turbin gas, kincir air, kincir angin dan lainnya. Pompa, kompresor, blower, fan dan lain-lain berfungsi untuk mengubah energi mekanis pada poros menjadi energi fluida (energi potensial dan energi kinetis). (Sihombing, Edis. 2009). 
Menurut Sejarahnya turbin-turbin air yang sekarang berasal dari kincir-kincir air pada zaman abad pertengahan yang dipakai untuk memecah batubara dan pabrik gandum. Salah satu kincir air tersebut dapat dilihat di Aungrabad, India yang telah berumur 400-an tahun. (Susatyo, Anjar. 2006). Walaupun banyak terdapat desain turbin air dengan masing-masing keistimewaannya, secara umum hampir semua turbin dapat diklasifikasikan dalam dua tipe dasar-turbin impuls dan turbin reaksi. Secara umum turbin impuls merupakan mesin dengan head yang tinggi, dan laju aliran yang rendah, sedangkan turbin reaksi merupakan mesin dengan head yang rendah dan laju aliran yang tinggi. (Munson, Bruce. 2005).

KLASIFIKASI TURBIN AIR
Turbin air dapat dikelompokkan dengan berbagai cara. Jenis turbin dapat digolongkan menjadi tiga sesuai dengan range dari head-nya, yaitu :
  1. Turbin dengan head rendah (< 30 meter)
  2. Turbin dengan head medium (30-240 meter)
  3. Turbin dengan head tinggi (> 240)
Head adalah selisih ketinggian level air yang masuk ke turbin (forebay) dengan air yang keluar dari turbin (afterbay). Untuk lebih jelas silahkan melihat gambar berikut.



Sedangkan menurut cara kerjanya, maka terdapat dua jenis turbin yaitu : 
  1. Turbin Impuls (aksi).
  2. Turbin Reaksi.
1. Turbin Impuls (aksi).
Turbin impuls adalah turbin air yang cara kerjanya dengan merubah seluruh energi air (yang teridiri dari energi potensial-tekanan-kecepatan) yang tersedia menjadi energi kinetik untuk memutar turbin, sehingga menghasilkan energi mekanik dalam bentuk putaran poros. Atau dengan kata lain, energi potensial air diubah menjadi energi kinetik. Contoh turbin impuls adalah turbin Pelton dan turbin Cross Flow. (Luknanto, Joko, 2007)

1) Turbin Cross Flow
 


Salah satu jenis turbin impuls ini juga disebut Turbin Michell-Banki yang merupakan penemunya. Turbin ini dapat dioperasikan pada debit 10 liter/sec–20 liter/sec dan heah antara 1-200 m. Turbin Cross Flow mengunakan nosel persegi panjang yang lebarnya sesuai dengan lebar runner. Runner turbin terbuat dari  beberapa sudu yang dipasang pada sepasang piringan paralel. (Sihombing, Edis.2009)
 


2) Turbin Pelton
Turbin Pelton merupakan salah satu jenis turbin impuls. Lester Pelton (1829-19080 sebagai penemu turbin Pelton adalah seorang ahli teknik pertambangan Amerika yang hidup pada masa eksploitasi emas di California. Efisiensi yang diperoleh oleh turbin Pelton akan lebih tinggi jika turbin dioperasikan pada head yang lebih tinggi yang akan diubah menjadi suatu kecepatan relative yang tinggi pada sisi keluar nosel. (Munson, Bruce. 2005.).

2. Turbin Reaksi
Turbin reaksi adalah turbin air yang cara bekerjanya dengan merubah seluruh energi air yang tersedia menjadi energi puntir dalam bentuk putaran. Sudu pada turbin reaksi mempunyai profil khusus yang menyebabkan terjadinya penurunan tekanan air selama melalui sudu. Turbin ini terdiri dari sudu pengarah dan sudu jalan dan kedua sudu tersebut semuanya terendam di dalam air. Air dialirkan ke dalam sebuah terusan atau dilewatkan ke dalam sebuah cincin yang berbentuk
spiral (rumah keong). 
Perubahan energi seluruhnya terjadi di dalam sudu gerak. Contoh turbin reaksi adalah turbin Francis dan turbin Propeler (Kaplan). (Luknanto, Joko, 2007).
1) Turbin Francis
Turbin Francis merupakan slah satu turbin reaksi. Turbin ini dipasang diantara sumber air tekanan tinggi di bagian masuk dan air bertekanan rendah di bagian keluar. Turbin Francis mempunyai sudu pengarah air masuk secara tangensial. Sudu pengarah ini dapat berupa sudut pengarah yang tetap maupun yang dapat diatur sudutnya. (Sihombing, Edis. 2009).

 

2) Turbin Propeler (Kaplan)
Turbin Kaplan (Propeler) adalah salah satu turbin reaksi aliran aksial. Turbin ini tersusun seperti propeller pada perahu. Propeller tersebut biasanya mempunyai tiga hingga enam sudu. . (Sihombing, Edisi. 2009).




Perbandingan Turbin Pelton, Francis & Kaplan: 


2.1 Perbandingan Karakteristik Turbin Air.
Kecepatan spesifik dari sebuah turbin juga dapat diartikan sebagai kecepatan ideal, persamaan geometris turbin, yang menghasilkan satu satuan daya tiap satu satuan head. Perhitungan tepat ini menghasilkan performa turbin dalam jangkauan head dan debit tertentu. Kisaran kecepatan spesifik beberapa turbin air adalah sebagai berikut:

Tabel 2.1 Kecepatan Spesifik Turbin

Daya Turbin (P)
Dari kapasitas air V dan tinggi air jatuh (H) dapat diperoleh daya yang dihasilkan turbin:


P dalam kW, bila:
V=m3/detik, ρ=kg/m3, g= m/detik2, H=m.

Bila massa aliran  dan tinggi air jatuh telah diketahui, maka daya yang dihasilkan: 
P=ṁ.g.H. ηT.
P dalam kW, bila:
ṁ=kg/det, g= m/detik2, H=m.


Berapakah daya yang dihasilkan dari sebuah turbin air, apabila kapasitas air V=5m3/detik, dan tinggi air jatuh H=120 m, serta randemen turbin ηT= 0,87.












Penelitian tentang turbin air: 


Pertanyaan umum: 

Sebutkan jenis turbin berdasarkan:
a. Range dari head-nya
b. Cara kerjanya